Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Surfactant effect of bismuth in atmospheric pressure MOVPE growth of InAs layers on (1 0 0) GaAs substrates

Identifieur interne : 003795 ( Main/Repository ); précédent : 003794; suivant : 003796

Surfactant effect of bismuth in atmospheric pressure MOVPE growth of InAs layers on (1 0 0) GaAs substrates

Auteurs : RBID : Pascal:11-0036748

Descripteurs français

English descriptors

Abstract

InAs layers have been grown on GaAs substrates with and without bismuth flow, at a growth temperature of 450 °C and a V/III ratio of 18, by atmospheric pressure metal-organic vapor phase epitaxy. Thickness measurements using scanning electron microscopy show that bismuth reduces the growth rate. Atomic force microscopy images show the presence of Bi islands inlayed in InAs layer degrading its surface morphology. High resolution X-ray diffraction curves confirm that bismuth does not incorporate into InAs layers but improves the crystalline quality by reducing the dislocation density. This improvement is attributed to Bi nanodots contributing to the strain relaxation. Room temperature Hall effect measurements have evidenced that growing InAs under Bi flow increases the electron mobility. Therefore Bi acts as a surfactant during growth of InAs layers on GaAs substrate.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0036748

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Surfactant effect of bismuth in atmospheric pressure MOVPE growth of InAs layers on (1 0 0) GaAs substrates</title>
<author>
<name sortKey="Ben Naceur, H" uniqKey="Ben Naceur H">H. Ben Naceur</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Unité de Recherche sur les Hétéro Epitaxies et Applications (URHEA), Faculté des Sciences de</s1>
<s2>Monastir 5019</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>Monastir 5019</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mzoughi, T" uniqKey="Mzoughi T">T. Mzoughi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Unité de Recherche sur les Hétéro Epitaxies et Applications (URHEA), Faculté des Sciences de</s1>
<s2>Monastir 5019</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>Monastir 5019</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moussa, I" uniqKey="Moussa I">I. Moussa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Unité de Recherche sur les Hétéro Epitaxies et Applications (URHEA), Faculté des Sciences de</s1>
<s2>Monastir 5019</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>Monastir 5019</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, L" uniqKey="Nguyen L">L. Nguyen</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>CNRS-CRHEA rue Bernard Gregory</s1>
<s2>06560 Valbonne</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Valbonne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rebey, A" uniqKey="Rebey A">A. Rebey</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Unité de Recherche sur les Hétéro Epitaxies et Applications (URHEA), Faculté des Sciences de</s1>
<s2>Monastir 5019</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>Monastir 5019</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="El Jani, B" uniqKey="El Jani B">B. El Jani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Unité de Recherche sur les Hétéro Epitaxies et Applications (URHEA), Faculté des Sciences de</s1>
<s2>Monastir 5019</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>Monastir 5019</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0036748</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0036748 INIST</idno>
<idno type="RBID">Pascal:11-0036748</idno>
<idno type="wicri:Area/Main/Corpus">003804</idno>
<idno type="wicri:Area/Main/Repository">003795</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1386-9477</idno>
<title level="j" type="abbreviated">Physica ( E) low-dimens. syst. nanostrut.</title>
<title level="j" type="main">Physica. E, low-dimentional systems and nanostructures</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atmospheric pressure</term>
<term>Atomic force microscopy</term>
<term>Bismuth</term>
<term>Dislocation density</term>
<term>Electrical properties</term>
<term>Electron mobility</term>
<term>Experimental design</term>
<term>Growth mechanism</term>
<term>Growth rate</term>
<term>Hall effect</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>MOVPE method</term>
<term>Mechanical properties</term>
<term>Nanodot</term>
<term>Nanostructured materials</term>
<term>Scanning electron microscopy</term>
<term>Stress relaxation</term>
<term>Surface morphology</term>
<term>Surfactants</term>
<term>Temperature effects</term>
<term>Temperature measurement</term>
<term>Thickness measurement</term>
<term>VPE</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Agent surface</term>
<term>Bismuth</term>
<term>Pression atmosphérique</term>
<term>Méthode MOVPE</term>
<term>Epitaxie phase vapeur</term>
<term>Mécanisme croissance</term>
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Mesure épaisseur</term>
<term>Microscopie électronique balayage</term>
<term>Taux croissance</term>
<term>Microscopie force atomique</term>
<term>Morphologie surface</term>
<term>Diffraction RX</term>
<term>Plan expérience</term>
<term>Densité dislocation</term>
<term>Nanopoint</term>
<term>Nanomatériau</term>
<term>Relaxation contrainte</term>
<term>Propriété mécanique</term>
<term>Mesure température</term>
<term>Effet température</term>
<term>Effet Hall</term>
<term>Propriété électrique</term>
<term>Mobilité électron</term>
<term>Substrat GaAs</term>
<term>8107B</term>
<term>6225</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Bismuth</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">InAs layers have been grown on GaAs substrates with and without bismuth flow, at a growth temperature of 450 °C and a V/III ratio of 18, by atmospheric pressure metal-organic vapor phase epitaxy. Thickness measurements using scanning electron microscopy show that bismuth reduces the growth rate. Atomic force microscopy images show the presence of Bi islands inlayed in InAs layer degrading its surface morphology. High resolution X-ray diffraction curves confirm that bismuth does not incorporate into InAs layers but improves the crystalline quality by reducing the dislocation density. This improvement is attributed to Bi nanodots contributing to the strain relaxation. Room temperature Hall effect measurements have evidenced that growing InAs under Bi flow increases the electron mobility. Therefore Bi acts as a surfactant during growth of InAs layers on GaAs substrate.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1386-9477</s0>
</fA01>
<fA03 i2="1">
<s0>Physica ( E) low-dimens. syst. nanostrut.</s0>
</fA03>
<fA05>
<s2>43</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Surfactant effect of bismuth in atmospheric pressure MOVPE growth of InAs layers on (1 0 0) GaAs substrates</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BEN NACEUR (H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MZOUGHI (T.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MOUSSA (I.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>NGUYEN (L.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>REBEY (A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>EL JANI (B.)</s1>
</fA11>
<fA14 i1="01">
<s1>Unité de Recherche sur les Hétéro Epitaxies et Applications (URHEA), Faculté des Sciences de</s1>
<s2>Monastir 5019</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CNRS-CRHEA rue Bernard Gregory</s1>
<s2>06560 Valbonne</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>106-110</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145E</s2>
<s5>354000194033290200</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>25 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0036748</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. E, low-dimentional systems and nanostructures</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>InAs layers have been grown on GaAs substrates with and without bismuth flow, at a growth temperature of 450 °C and a V/III ratio of 18, by atmospheric pressure metal-organic vapor phase epitaxy. Thickness measurements using scanning electron microscopy show that bismuth reduces the growth rate. Atomic force microscopy images show the presence of Bi islands inlayed in InAs layer degrading its surface morphology. High resolution X-ray diffraction curves confirm that bismuth does not incorporate into InAs layers but improves the crystalline quality by reducing the dislocation density. This improvement is attributed to Bi nanodots contributing to the strain relaxation. Room temperature Hall effect measurements have evidenced that growing InAs under Bi flow increases the electron mobility. Therefore Bi acts as a surfactant during growth of InAs layers on GaAs substrate.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60B25</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Agent surface</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Surfactants</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Bismuth</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Bismuth</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Pression atmosphérique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Atmospheric pressure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>VPE</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Mesure épaisseur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Thickness measurement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Taux croissance</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Growth rate</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Morphologie surface</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Surface morphology</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>XRD</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Plan expérience</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Experimental design</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Densité dislocation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Dislocation density</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Nanopoint</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Nanodot</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Nanopunto</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Relaxation contrainte</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Stress relaxation</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Propriété mécanique</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Mechanical properties</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Mesure température</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Temperature measurement</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Effet température</s0>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Temperature effects</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Effet Hall</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Hall effect</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>39</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>40</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>40</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Substrat GaAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>6225</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>024</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003795 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003795 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0036748
   |texte=   Surfactant effect of bismuth in atmospheric pressure MOVPE growth of InAs layers on (1 0 0) GaAs substrates
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024